Difference makes the DIFFERENCE
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes = True)
x = np.random.normal(size=1000)
sns.distplot(x)
sns.distplot(x, kde = False)
sns.set(color_codes = True)
sns.distplot(x, kde = False, rug = True)
sns.distplot(x, bins=50, kde=False, rug=True)
sns.kdeplot(x)
sns.kdeplot(x, shade=True)
y = np.random.uniform(size=1000)
sns.kdeplot(y, shade=True)
sns.kdeplot(x, shade=True);
d = sns.load_dataset('diamonds')
d
d.info()
sns.distplot(d.carat)
# the outcome is not uni-modal distribution
sns.distplot(d.price)
# the outcome is a long tailed distribution - right skewed distribution
sns.distplot(d.x)
sns.distplot(d.x, rug=True)
sns.distplot(d.sample(1000).x, rug = True)
sns.kdeplot(d.x)
sns.kdeplot(d.y)
sns.kdeplot(d.z)
sns.kdeplot(d.x, shade=True)
sns.kdeplot(d.y, shade=True)
sns.kdeplot(d.z, shade=True)
sns.kdeplot(d.x, shade=True)
sns.kdeplot(d.y, shade=True)
# x and y dataset is almost similar in nature