##### Week 13 - Class Demo
FDS_W13
In [ ]:
import numpy as np
import pandas as pd
import seaborn as sns

# Dealing with missing data¶

## Numpy¶

In [ ]:
x = np.array([1, 2, 3, 4, 5])
In [ ]:
x.sum()
Out[ ]:
15
In [ ]:
print(x.dtype)
int64
In [ ]:
x = np.array([1, 2, 3, '--', 5])
In [ ]:
print(x.dtype)
<U21
In [ ]:
x.sum()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-7-c6d45b513c2c> in <module>()
----> 1 x.sum()

/usr/local/lib/python3.6/dist-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where)
36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
37          initial=_NoValue, where=True):
---> 38     return umr_sum(a, axis, dtype, out, keepdims, initial, where)
39
40 def _prod(a, axis=None, dtype=None, out=None, keepdims=False,

TypeError: cannot perform reduce with flexible type
In [ ]:
x = np.array([1, 2, 3, None, 5])
In [ ]:
x.sum()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-c6d45b513c2c> in <module>()
----> 1 x.sum()

/usr/local/lib/python3.6/dist-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where)
36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
37          initial=_NoValue, where=True):
---> 38     return umr_sum(a, axis, dtype, out, keepdims, initial, where)
39
40 def _prod(a, axis=None, dtype=None, out=None, keepdims=False,

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'
In [ ]:
x = np.array([1, 2, 3, np.nan, 5])
In [ ]:
x.sum()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-10-c6d45b513c2c> in <module>()
----> 1 x.sum()

/usr/local/lib/python3.6/dist-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where)
36 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
37          initial=_NoValue, where=True):
---> 38     return umr_sum(a, axis, dtype, out, keepdims, initial, where)
39
40 def _prod(a, axis=None, dtype=None, out=None, keepdims=False,

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'
In [ ]:
1 * np.nan
Out[ ]:
nan
In [ ]:
x_b = np.array([True, True, True, False, True])
In [ ]:
x[x_b]
Out[ ]:
array([1, 2, 3, 5], dtype=object)
In [ ]:
x[x_b].mean()
Out[ ]:
2.75
In [ ]:
m_x = np.ma.masked_array(x, mask = [0, 0, 0, 1, 0])
In [ ]:
m_x.mean()
Out[ ]:
2.75

## Dealing with missing data with Pandas¶

In [ ]:
In [ ]:
Out[ ]:
Room_Number Num_Students Department Occupied
0 101.0 1 Mechanical Y
1 102.0 NaN Empty N
2 103.0 3 Electrical Y
3 104.0 2 Mechanical Y
4 105.0 NaN Chemical N
In [ ]:
df.dtypes
Out[ ]:
Room_Number     float64
Num_Students     object
Department       object
Occupied         object
dtype: object
In [ ]:
%timeit np.arange(100000, dtype="int").sum()
1000 loops, best of 3: 264 µs per loop
In [ ]:
%timeit np.arange(100000, dtype="object").sum()
100 loops, best of 3: 6.49 ms per loop
In [ ]:
df.Room_Number.isnull()
Out[ ]:
0    False
1    False
2    False
3    False
4    False
5     True
6    False
7    False
8    False
9    False
Name: Room_Number, dtype: bool
In [ ]:
df.Room_Number.isnull().sum()
Out[ ]:
1
In [ ]:
df.isnull()
Out[ ]:
Room_Number Num_Students Department Occupied
0 False False False False
1 False True False False
2 False False False False
3 False False False False
4 False True False False
5 True False False False
6 False False False False
7 False True False False
8 False False False True
9 False False False False
In [ ]:
df.isnull().sum()
Out[ ]:
Room_Number     1
Num_Students    3
Department      0
Occupied        1
dtype: int64
In [ ]:
missing_values = ["NA", "n/a", "na"]
In [ ]:
na_values = missing_values)
In [ ]:
df.isnull()
Out[ ]:
Room_Number Num_Students Department Occupied
0 False False False False
1 False True False False
2 False False False False
3 False False False False
4 False True False False
5 True False False False
6 False False False False
7 False True False False
8 False True False True
9 False False False False
In [ ]:
df.Num_Students.mean()
Out[ ]:
2.0
In [ ]:
missing_values = ["NA", "n/a", "na", "Empty", "--"]
In [ ]:
na_values = missing_values)
In [ ]:
df.isnull()
Out[ ]:
Room_Number Num_Students Department Occupied
0 False False False False
1 False True True False
2 False False False False
3 False False False False
4 False True False False
5 True False False False
6 False False False True
7 False True False False
8 False True False True
9 False False False False
In [ ]:
df.Department.unique()
Out[ ]:
array(['Mechanical', nan, 'Electrical', 'Chemical', 'Civil', 'CS'],
dtype=object)
In [ ]:
df.Occupied.fillna("N", inplace=True)
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied
0 101.0 1.0 Mechanical Y
1 102.0 NaN NaN N
2 103.0 3.0 Electrical Y
3 104.0 2.0 Mechanical Y
4 105.0 NaN Chemical N
5 NaN 1.0 Electrical Y
6 107.0 3.0 Civil N
7 108.0 NaN CS Y
8 109.0 NaN Mechanical N
9 110.0 2.0 CS N
In [ ]:
def convert_to_binary(v):
if v == 'Y':
return True
else:
return False
In [ ]:
df.Occupied = df.Occupied.apply(convert_to_binary)
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied
0 101.0 1.0 Mechanical True
1 102.0 NaN NaN False
2 103.0 3.0 Electrical True
3 104.0 2.0 Mechanical True
4 105.0 NaN Chemical False
5 NaN 1.0 Electrical True
6 107.0 3.0 Civil False
7 108.0 NaN CS True
8 109.0 NaN Mechanical False
9 110.0 2.0 CS False
In [ ]:
df["Dept2"] = df.Department
In [ ]:
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied Dept2
0 101.0 1.0 Mechanical True Mechanical
1 102.0 NaN Mechanical False NaN
2 103.0 3.0 Electrical True Electrical
3 104.0 2.0 Mechanical True Mechanical
4 105.0 NaN Chemical False Chemical
5 NaN 1.0 Electrical True Electrical
6 107.0 3.0 Civil False Civil
7 108.0 NaN CS True CS
8 109.0 NaN Mechanical False Mechanical
9 110.0 2.0 CS False CS
In [ ]:
df.Dept2.fillna(method="bfill", inplace=True)
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied Dept2
0 101.0 1.0 Mechanical True Mechanical
1 102.0 NaN Mechanical False Electrical
2 103.0 3.0 Electrical True Electrical
3 104.0 2.0 Mechanical True Mechanical
4 105.0 NaN Chemical False Chemical
5 NaN 1.0 Electrical True Electrical
6 107.0 3.0 Civil False Civil
7 108.0 NaN CS True CS
8 109.0 NaN Mechanical False Mechanical
9 110.0 2.0 CS False CS
In [ ]:
df.Num_Students.fillna(df.Num_Students.median(), inplace=True)
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied Dept2
0 101.0 1.0 Mechanical True Mechanical
1 102.0 2.0 Mechanical False Electrical
2 103.0 3.0 Electrical True Electrical
3 104.0 2.0 Mechanical True Mechanical
4 105.0 2.0 Chemical False Chemical
5 NaN 1.0 Electrical True Electrical
6 107.0 3.0 Civil False Civil
7 108.0 2.0 CS True CS
8 109.0 2.0 Mechanical False Mechanical
9 110.0 2.0 CS False CS
In [ ]:
df.Room_Number.interpolate(inplace=True)
In [ ]:
df
Out[ ]:
Room_Number Num_Students Department Occupied Dept2
0 101.0 1.0 Mechanical True Mechanical
1 102.0 2.0 Mechanical False Electrical
2 103.0 3.0 Electrical True Electrical
3 104.0 2.0 Mechanical True Mechanical
4 105.0 2.0 Chemical False Chemical
5 106.0 1.0 Electrical True Electrical
6 107.0 3.0 Civil False Civil
7 108.0 2.0 CS True CS
8 109.0 2.0 Mechanical False Mechanical
9 110.0 2.0 CS False CS

# Open ended descriptive statistics¶

In [ ]:
In [ ]:
Out[ ]:
ID Salary DOJ DOL Designation JobCity Gender DOB 10percentage 10board 12graduation 12percentage 12board CollegeID CollegeTier Degree Specialization collegeGPA CollegeCityID CollegeCityTier CollegeState GraduationYear English Logical Quant Domain ComputerProgramming ElectronicsAndSemicon ComputerScience MechanicalEngg ElectricalEngg TelecomEngg CivilEngg conscientiousness agreeableness extraversion nueroticism openess_to_experience
0 203097 420000 2012-06-01 present senior quality engineer Bangalore f 1990-02-19 84.3 board ofsecondary education,ap 2007 95.8 board of intermediate education,ap 1141 2 B.Tech/B.E. computer engineering 78.00 1141 0 Andhra Pradesh 2011 515 585 525 0.635979 445 -1 -1 -1 -1 -1 -1 0.9737 0.8128 0.5269 1.35490 -0.4455
1 579905 500000 2013-09-01 present assistant manager Indore m 1989-10-04 85.4 cbse 2007 85.0 cbse 5807 2 B.Tech/B.E. electronics and communication engineering 70.06 5807 0 Madhya Pradesh 2012 695 610 780 0.960603 -1 466 -1 -1 -1 -1 -1 -0.7335 0.3789 1.2396 -0.10760 0.8637
2 810601 325000 2014-06-01 present systems engineer Chennai f 1992-08-03 85.0 cbse 2010 68.2 cbse 64 2 B.Tech/B.E. information technology 70.00 64 0 Uttar Pradesh 2014 615 545 370 0.450877 395 -1 -1 -1 -1 -1 -1 0.2718 1.7109 0.1637 -0.86820 0.6721
3 267447 1100000 2011-07-01 present senior software engineer Gurgaon m 1989-12-05 85.6 cbse 2007 83.6 cbse 6920 1 B.Tech/B.E. computer engineering 74.64 6920 1 Delhi 2011 635 585 625 0.974396 615 -1 -1 -1 -1 -1 -1 0.0464 0.3448 -0.3440 -0.40780 -0.9194
4 343523 200000 2014-03-01 2015-03-01 00:00:00 get Manesar m 1991-02-27 78.0 cbse 2008 76.8 cbse 11368 2 B.Tech/B.E. electronics and communication engineering 73.90 11368 0 Uttar Pradesh 2012 545 625 465 0.124502 -1 233 -1 -1 -1 -1 -1 -0.8810 -0.2793 -1.0697 0.09163 -0.1295
In [ ]:
df.shape
Out[ ]:
(3998, 38)
In [ ]:
df.isnull().sum().sum()
Out[ ]:
0
In [ ]:
df.dtypes
Out[ ]:
ID                                int64
Salary                            int64
DOJ                      datetime64[ns]
DOL                              object
Designation                      object
JobCity                          object
Gender                           object
DOB                      datetime64[ns]
10percentage                    float64
10board                          object
12percentage                    float64
12board                          object
CollegeID                         int64
CollegeTier                       int64
Degree                           object
Specialization                   object
collegeGPA                      float64
CollegeCityID                     int64
CollegeCityTier                   int64
CollegeState                     object
English                           int64
Logical                           int64
Quant                             int64
Domain                          float64
ComputerProgramming               int64
ElectronicsAndSemicon             int64
ComputerScience                   int64
MechanicalEngg                    int64
ElectricalEngg                    int64
TelecomEngg                       int64
CivilEngg                         int64
conscientiousness               float64
agreeableness                   float64
extraversion                    float64
nueroticism                     float64
openess_to_experience           float64
dtype: object
In [ ]:
df.Gender.unique()
Out[ ]:
array(['f', 'm'], dtype=object)
In [ ]:
sns.violinplot(x='Gender', y='Salary', data=df);
In [ ]:
df[['10percentage', '12percentage', 'collegeGPA', 'Gender']].groupby('Gender').mean()
Out[ ]:
10percentage 12percentage collegeGPA
Gender
f 80.932894 77.007618 74.048056
m 76.979000 73.666636 70.679947
In [ ]:
df[['10percentage', '12percentage', 'collegeGPA', 'Gender']].groupby('Gender').median()
Out[ ]:
10percentage 12percentage collegeGPA
Gender
f 82.4 77.0 74.00
m 78.0 73.4 70.66
In [ ]:
df[['conscientiousness', 'agreeableness', 'extraversion', 'nueroticism', 'openess_to_experience', 'Gender']].groupby('Gender').mean()
Out[ ]:
conscientiousness agreeableness extraversion nueroticism openess_to_experience
Gender
f 0.121034 0.292444 0.012173 -0.179358 0.038246
m -0.087826 0.100566 -0.000198 -0.165783 -0.193609
In [ ]:
df[['conscientiousness', 'agreeableness', 'extraversion', 'nueroticism', 'openess_to_experience', 'Gender']].groupby('Gender').median()
Out[ ]:
conscientiousness agreeableness extraversion nueroticism openess_to_experience
Gender
f 0.2718 0.3789 0.0914 -0.23440 0.0973
m -0.0154 0.2124 0.0914 -0.17277 -0.0943
In [ ]:
df[['Salary', 'Gender']].groupby('Gender').mean()
Out[ ]:
Salary
Gender
f 294937.304075
m 311716.211772
In [ ]:
th = df.Salary.mean()+df.Salary.std()
In [ ]:
df['HighIncome'] = (df.Salary > th)
In [ ]:
df.sample(10)
In [ ]:
In [ ]:
df[['Salary', 'HighIncome', 'Gender']].groupby(['HighIncome', 'Gender']).mean()
Out[ ]:
Salary
HighIncome Gender
False f 271499.454744
m 272598.433606
True f 832250.000000
m 785344.827586
In [ ]:
df[['Salary', 'HighIncome', 'Gender']].groupby(['HighIncome', 'Gender']).count()
Out[ ]:
Salary
HighIncome Gender
False f 917
m 2809
True f 40
m 232
In [ ]:
print('Low income female percentage', 917/(2809+917)*100)
Low income female percentage 24.610842726784757
In [ ]:
print('High income female percentage', 40/(232+40)*100)
High income female percentage 14.705882352941178
In [ ]:
df.CollegeTier.unique()
Out[ ]:
array([2, 1])
In [ ]:
df[['CollegeTier', 'HighIncome', 'Salary']].groupby(['HighIncome', 'CollegeTier']).count()
Out[ ]:
Salary
HighIncome CollegeTier
False 1 234
2 3492
True 1 63
2 209
In [ ]:
print('Low income college tier 2 percentage is', 3492/(3492+234)*100)
Low income college tier 2 percentage is 93.71980676328504
In [ ]:
print('High income college tier 2 percentage is', 209/(209+63)*100)
High income college tier 2 percentage is 76.83823529411765
In [ ]:
df[['Gender', 'CollegeTier', 'Salary']].groupby(['CollegeTier', 'Gender']).count()
Out[ ]:
Salary
CollegeTier Gender
1 f 51
m 246
2 f 906
m 2795
In [ ]:
print('In college tier 1 female percentage is', 51/(246+51)*100)
In college tier 1 female percentage is 17.17171717171717
In [ ]:
print('In college tier 2 female percentage is', 906/(906+2795)*100)
In college tier 2 female percentage is 24.479870305322883

## Agriculture example¶

In [ ]:
df = pd.read_csv('apy.csv', na_values="=")
In [ ]:
Out[ ]:
State_Name District_Name Crop_Year Season Crop Area Production
0 Andaman and Nicobar Islands NICOBARS 2000 Kharif Arecanut 1254.0 2000.0
1 Andaman and Nicobar Islands NICOBARS 2000 Kharif Other Kharif pulses 2.0 1.0
2 Andaman and Nicobar Islands NICOBARS 2000 Kharif Rice 102.0 321.0
3 Andaman and Nicobar Islands NICOBARS 2000 Whole Year Banana 176.0 641.0
4 Andaman and Nicobar Islands NICOBARS 2000 Whole Year Cashewnut 720.0 165.0
In [ ]:
df.State_Name.unique()
Out[ ]:
array(['Andaman and Nicobar Islands', 'Andhra Pradesh',
'Arunachal Pradesh', 'Assam', 'Bihar', 'Chandigarh',
'Chhattisgarh', 'Dadra and Nagar Haveli', 'Goa', 'Gujarat',
'Haryana', 'Himachal Pradesh', 'Jammu and Kashmir ', 'Jharkhand',
'Meghalaya', 'Mizoram', 'Nagaland', 'Odisha', 'Puducherry',
'Punjab', 'Rajasthan', 'Sikkim', 'Tamil Nadu', 'Telangana ',
'Tripura', 'Uttar Pradesh', 'Uttarakhand', 'West Bengal'],
dtype=object)
In [ ]:
df.Crop_Year.unique()
Out[ ]:
array([2000, 2001, 2002, 2003, 2004, 2005, 2006, 2010, 1997, 1998, 1999,
2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015])
In [ ]:
df.dtypes
Out[ ]:
State_Name        object
District_Name     object
Crop_Year          int64
Season            object
Crop              object
Area             float64
Production       float64
dtype: object
In [ ]:
df.Season.unique()
Out[ ]:
array(['Kharif     ', 'Whole Year ', 'Autumn     ', 'Rabi       ',
'Summer     ', 'Winter     '], dtype=object)
In [ ]:
df.Crop.unique()
In [ ]:
pd.to_numeric(df.Production)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
pandas/_libs/lib.pyx in pandas._libs.lib.maybe_convert_numeric()

ValueError: Unable to parse string "="

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-114-f0c12b31c09e> in <module>()
----> 1 pd.to_numeric(df.Production)

/usr/local/lib/python3.6/dist-packages/pandas/core/tools/numeric.py in to_numeric(arg, errors, downcast)
148         try:
149             values = lib.maybe_convert_numeric(
--> 150                 values, set(), coerce_numeric=coerce_numeric
151             )
152         except (ValueError, TypeError):

pandas/_libs/lib.pyx in pandas._libs.lib.maybe_convert_numeric()

ValueError: Unable to parse string "=" at position 623
In [ ]:
df.Production.isnull().sum()
Out[ ]:
3727
In [ ]:
df.shape
Out[ ]:
(246091, 7)
In [ ]:
df.dropna(inplace=True)
In [ ]:
df.shape
Out[ ]:
(242364, 7)
In [ ]:
sns.kdeplot(df.Production)
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe7e2dec4e0>
In [ ]:
sns.boxplot(df.Production)
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe7e2a36fd0>
In [ ]:
sns.boxplot(df.Area)
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe7e29cd048>
In [ ]:
sns.kdeplot(df.Area)
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fe7e2a265f8>
In [ ]:
df[df.State_Name == "Karnataka"]['District_Name'].unique()
Out[ ]:
array(['BAGALKOT', 'BANGALORE RURAL', 'BELGAUM', 'BELLARY',
'BENGALURU URBAN', 'BIDAR', 'BIJAPUR', 'CHAMARAJANAGAR',
'KODAGU', 'KOLAR', 'KOPPAL', 'MANDYA', 'MYSORE', 'RAICHUR',
'RAMANAGARA', 'SHIMOGA', 'TUMKUR', 'UDUPI', 'UTTAR KANNAD',
In [ ]:
df.groupby(['State_Name', 'Crop', 'Crop_Year']).sum()
Out[ ]:
Area Production
State_Name Crop Crop_Year
Andaman and Nicobar Islands Arecanut 2000 4354.00 7200.00
2001 4354.00 7300.00
2002 4363.00 7350.00
2003 4379.00 6707.00
2004 4425.37 4781.05
... ... ... ... ...
West Bengal Wheat 2010 316808.00 874415.00
2011 315659.00 872895.00
2012 321572.00 895927.00
2013 331481.00 927837.00
2014 334640.00 939254.00

12896 rows × 2 columns

In [ ]:
df[df.State_Name == "West Bengal"]['Crop'].unique()
Out[ ]:
array(['Rice', 'Jute', 'Mesta', 'Urad', 'Gram', 'Khesari', 'Masoor',
'Moong(Green Gram)', 'Oilseeds total', 'Wheat', 'Arecanut',
'Arhar/Tur', 'Coconut ', 'Dry chillies', 'Groundnut', 'Linseed',
'Maize', 'Potato', 'Pulses total', 'Rapeseed &Mustard', 'Sesamum',
'Sugarcane', 'Turmeric', 'Dry ginger', 'Sunflower',
'Peas & beans (Pulses)', 'Cotton(lint)', 'Safflower', 'Garlic',
'Barley', 'Bajra', 'Horse-gram', 'Other Kharif pulses', 'Soyabean',
'Jowar', 'Niger seed', 'Sannhamp', 'Small millets', 'Tobacco',
'Ragi', 'Other  Rabi pulses', 'Cardamom', 'Castor seed', 'Moth'],
dtype=object)
In [ ]:
df.groupby(['State_Name', 'Crop_Year']).sum()
Out[ ]:
Area Production
State_Name Crop_Year
Andaman and Nicobar Islands 2000 44518.00 89060914.00
2001 41163.00 89718700.00
2002 45231.40 94387137.67
2003 44799.40 95296454.67
2004 45308.77 87186497.63
... ... ... ...
West Bengal 2010 7246875.00 38308645.00
2011 7755360.00 36777774.00
2012 7850936.00 38918275.00
2013 7999815.00 37901281.00
2014 8058390.00 43584403.00

519 rows × 2 columns

In [ ]:
df_ = df.groupby(['State_Name', 'Crop_Year']).sum()
In [ ]:
df_.reset_index(inplace=True)
In [ ]:
Out[ ]:
State_Name Crop_Year Area Production
0 Andaman and Nicobar Islands 2000 44518.00 89060914.00
1 Andaman and Nicobar Islands 2001 41163.00 89718700.00
2 Andaman and Nicobar Islands 2002 45231.40 94387137.67
3 Andaman and Nicobar Islands 2003 44799.40 95296454.67
4 Andaman and Nicobar Islands 2004 45308.77 87186497.63
In [ ]:
df_[['State_Name', 'Crop_Year']].groupby('State_Name').count()
In [ ]:
sns.lineplot(x="Crop_Year", y="Production", data=df[df.State_Name == "Tamil Nadu"]);
In [ ]:
sns.lineplot(x="Crop_Year", y="Production", data=df, hue="State_Name");
In [ ]:
!pip3 install plotly_express
In [ ]:
import plotly_express as px
In [ ]:
px.scatter(df_, x="Area", y="Production", animation_frame="Crop_Year",
animation_group="State_Name", color="State_Name")
In [ ]:
df_.sort_values('Crop_Year', inplace=True)
In [ ]:
df[(df.State_Name == "Kerala") & (df.Crop_Year == 2000)].sort_values('Production')
Out[ ]:
State_Name District_Name Crop_Year Season Crop Area Production
99868 Kerala KOTTAYAM 2000 Kharif Sesamum 6.0 1.0
100437 Kerala MALAPPURAM 2000 Kharif Ragi 4.0 3.0
99567 Kerala KOLLAM 2000 Summer Rice 4.0 4.0
98946 Kerala KANNUR 2000 Kharif Sesamum 10.0 6.0
98604 Kerala IDUKKI 2000 Kharif Ragi 8.0 7.0
... ... ... ... ... ... ... ...
101702 Kerala THRISSUR 2000 Whole Year Coconut 89472.0 540000000.0
98953 Kerala KANNUR 2000 Whole Year Coconut 96975.0 621000000.0
100445 Kerala MALAPPURAM 2000 Whole Year Coconut 110378.0 626000000.0
101425 Kerala THIRUVANANTHAPURAM 2000 Whole Year Coconut 88663.0 635000000.0
100162 Kerala KOZHIKODE 2000 Whole Year Coconut 128739.0 903000000.0

203 rows × 7 columns

In [ ]:
df_ = df[df.Crop.isin(['Rice', 'Wheat', 'Maize', 'Ragi'])].groupby(['State_Name', 'Crop_Year']).sum()
In [ ]:
Out[ ]:
Area Production
State_Name Crop_Year
Andaman and Nicobar Islands 2000 10881.00 32184.00
2001 9801.00 27333.00
2002 10885.00 32111.66
2003 10561.37 30850.87
2004 10734.92 29192.23
In [ ]:
df_.reset_index(inplace=True)
In [ ]:
df_.sort_values('Crop_Year', inplace=True)
In [ ]:
px.scatter(df_, x="Area", y="Production", animation_frame="Crop_Year",
animation_group="State_Name", color="State_Name")
In [ ]:
df_['Efficiency'] = df_['Production'] / df_['Area']
In [ ]:
px.scatter(df_, x="Area", y="Efficiency", size="Production", animation_frame="Crop_Year",
animation_group="State_Name", color="State_Name", range_y = [0.75, 5], range_x=[-1E6, 20E6])