Difference makes the DIFFERENCE
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
url = 'https://api.covid19india.org/states_daily.json'
import urllib.request
urllib.request.urlretrieve(url, 'data.json')
('data.json', <http.client.HTTPMessage at 0x7f5032a97710>)
df = pd.read_json('data.json')
df
states_daily | |
---|---|
0 | {'an': '0', 'ap': '1', 'ar': '0', 'as': '0', '... |
1 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
2 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
3 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
4 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
... | ... |
1558 | {'an': '2', 'ap': '1835', 'ar': '255', 'as': '... |
1559 | {'an': '0', 'ap': '16', 'ar': '0', 'as': '10',... |
1560 | {'an': '1', 'ap': '909', 'ar': '165', 'as': '7... |
1561 | {'an': '0', 'ap': '1543', 'ar': '249', 'as': '... |
1562 | {'an': '0', 'ap': '13', 'ar': '0', 'as': '10',... |
1563 rows × 1 columns
import json
with open('data.json') as f:
data = json.load(f)
data
# output is displayed in a very long list of values in json file format
data = data['states_daily']
df = pd.json_normalize(data)
df
an | ap | ar | as | br | ch | ct | date | dateymd | dd | ... | sk | status | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 2020-03-14 | 0 | ... | 0 | Confirmed | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 2020-03-14 | 0 | ... | 0 | Recovered | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 2020-03-14 | 0 | ... | 0 | Deceased | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15-Mar-20 | 2020-03-15 | 0 | ... | 0 | Confirmed | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15-Mar-20 | 2020-03-15 | 0 | ... | 0 | Recovered | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1558 | 2 | 1835 | 255 | 857 | 38 | 1 | 114 | 15-Aug-21 | 2021-08-15 | 0 | ... | 213 | Recovered | 582 | 1842 | 253 | 35936 | 0 | 36 | 31 | 709 |
1559 | 0 | 16 | 0 | 10 | 0 | 0 | 1 | 15-Aug-21 | 2021-08-15 | 0 | ... | 0 | Deceased | 1 | 23 | 4 | 421 | 0 | 1 | 0 | 12 |
1560 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 16-Aug-21 | 2021-08-16 | 0 | ... | 20 | Confirmed | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
1561 | 0 | 1543 | 249 | 1014 | 42 | 3 | 224 | 16-Aug-21 | 2021-08-16 | 0 | ... | 147 | Recovered | 577 | 1911 | 223 | 36871 | 0 | 36 | 54 | 691 |
1562 | 0 | 13 | 0 | 10 | 0 | 0 | 1 | 16-Aug-21 | 2021-08-16 | 0 | ... | 0 | Deceased | 3 | 28 | 1 | 438 | 0 | 1 | 1 | 9 |
1563 rows × 42 columns
df.date = pd.to_datetime(df.date)
df
an | ap | ar | as | br | ch | ct | date | dateymd | dd | ... | sk | status | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2020-03-14 | 2020-03-14 | 0 | ... | 0 | Confirmed | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-14 | 2020-03-14 | 0 | ... | 0 | Recovered | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-14 | 2020-03-14 | 0 | ... | 0 | Deceased | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-15 | 2020-03-15 | 0 | ... | 0 | Confirmed | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-15 | 2020-03-15 | 0 | ... | 0 | Recovered | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1558 | 2 | 1835 | 255 | 857 | 38 | 1 | 114 | 2021-08-15 | 2021-08-15 | 0 | ... | 213 | Recovered | 582 | 1842 | 253 | 35936 | 0 | 36 | 31 | 709 |
1559 | 0 | 16 | 0 | 10 | 0 | 0 | 1 | 2021-08-15 | 2021-08-15 | 0 | ... | 0 | Deceased | 1 | 23 | 4 | 421 | 0 | 1 | 0 | 12 |
1560 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 2021-08-16 | 2021-08-16 | 0 | ... | 20 | Confirmed | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
1561 | 0 | 1543 | 249 | 1014 | 42 | 3 | 224 | 2021-08-16 | 2021-08-16 | 0 | ... | 147 | Recovered | 577 | 1911 | 223 | 36871 | 0 | 36 | 54 | 691 |
1562 | 0 | 13 | 0 | 10 | 0 | 0 | 1 | 2021-08-16 | 2021-08-16 | 0 | ... | 0 | Deceased | 3 | 28 | 1 | 438 | 0 | 1 | 1 | 9 |
1563 rows × 42 columns
df = df[df.status == "Confirmed"]
df
an | ap | ar | as | br | ch | ct | date | dateymd | dd | ... | sk | status | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2020-03-14 | 2020-03-14 | 0 | ... | 0 | Confirmed | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-15 | 2020-03-15 | 0 | ... | 0 | Confirmed | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-16 | 2020-03-16 | 0 | ... | 0 | Confirmed | 1 | 0 | 0 | 15 | 0 | 0 | 1 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-17 | 2020-03-17 | 0 | ... | 0 | Confirmed | 1 | 0 | 0 | 11 | 0 | 2 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-18 | 2020-03-18 | 0 | ... | 0 | Confirmed | 8 | 1 | 0 | 37 | 0 | 2 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1548 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 2021-08-12 | 2021-08-12 | 0 | ... | 100 | Confirmed | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
1551 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 2021-08-13 | 2021-08-13 | 0 | ... | 150 | Confirmed | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
1554 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 2021-08-14 | 2021-08-14 | 0 | ... | 129 | Confirmed | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
1557 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 2021-08-15 | 2021-08-15 | 0 | ... | 152 | Confirmed | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
1560 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 2021-08-16 | 2021-08-16 | 0 | ... | 20 | Confirmed | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
521 rows × 42 columns
df.drop(['status'], axis = 1, inplace = True)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df.set_index('date', inplace = True)
df
an | ap | ar | as | br | ch | ct | dateymd | dd | dl | ... | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2020-03-14 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2020-03-14 | 0 | 7 | ... | 3 | 0 | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
2020-03-15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-15 | 0 | 0 | ... | 1 | 0 | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
2020-03-16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-16 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 15 | 0 | 0 | 1 | 0 |
2020-03-17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-17 | 0 | 1 | ... | 0 | 0 | 1 | 0 | 0 | 11 | 0 | 2 | 0 | 1 |
2020-03-18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2020-03-18 | 0 | 2 | ... | 3 | 0 | 8 | 1 | 0 | 37 | 0 | 2 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2021-08-12 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 2021-08-12 | 0 | 49 | ... | 17 | 100 | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
2021-08-13 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 2021-08-13 | 0 | 50 | ... | 24 | 150 | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
2021-08-14 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 2021-08-14 | 0 | 50 | ... | 14 | 129 | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
2021-08-15 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 2021-08-15 | 0 | 53 | ... | 18 | 152 | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
2021-08-16 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 2021-08-16 | 0 | 27 | ... | 11 | 20 | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
521 rows × 40 columns
df.drop('dateymd', inplace = True, axis=1)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df
an | ap | ar | as | br | ch | ct | dd | dl | dn | ... | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2020-03-14 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | ... | 3 | 0 | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
2020-03-15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
2020-03-16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 15 | 0 | 0 | 1 | 0 |
2020-03-17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 11 | 0 | 2 | 0 | 1 |
2020-03-18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | ... | 3 | 0 | 8 | 1 | 0 | 37 | 0 | 2 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2021-08-12 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | ... | 17 | 100 | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
2021-08-13 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | ... | 24 | 150 | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
2021-08-14 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | ... | 14 | 129 | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
2021-08-15 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | ... | 18 | 152 | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
2021-08-16 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | ... | 11 | 20 | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
521 rows × 39 columns
df.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 521 entries, 2020-03-14 to 2021-08-16 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 an 521 non-null object 1 ap 521 non-null object 2 ar 521 non-null object 3 as 521 non-null object 4 br 521 non-null object 5 ch 521 non-null object 6 ct 521 non-null object 7 dd 521 non-null object 8 dl 521 non-null object 9 dn 521 non-null object 10 ga 521 non-null object 11 gj 521 non-null object 12 hp 521 non-null object 13 hr 521 non-null object 14 jh 521 non-null object 15 jk 521 non-null object 16 ka 521 non-null object 17 kl 521 non-null object 18 la 521 non-null object 19 ld 521 non-null object 20 mh 521 non-null object 21 ml 521 non-null object 22 mn 521 non-null object 23 mp 521 non-null object 24 mz 521 non-null object 25 nl 521 non-null object 26 or 521 non-null object 27 pb 521 non-null object 28 py 521 non-null object 29 rj 521 non-null object 30 sk 521 non-null object 31 tg 521 non-null object 32 tn 521 non-null object 33 tr 521 non-null object 34 tt 521 non-null object 35 un 521 non-null object 36 up 521 non-null object 37 ut 521 non-null object 38 wb 521 non-null object dtypes: object(39) memory usage: 162.8+ KB
df.tn
date 2020-03-14 1 2020-03-15 0 2020-03-16 0 2020-03-17 0 2020-03-18 1 ... 2021-08-12 1942 2021-08-13 1933 2021-08-14 1916 2021-08-15 1896 2021-08-16 1851 Name: tn, Length: 521, dtype: object
pd.to_numeric(df.tn)
date 2020-03-14 1 2020-03-15 0 2020-03-16 0 2020-03-17 0 2020-03-18 1 ... 2021-08-12 1942 2021-08-13 1933 2021-08-14 1916 2021-08-15 1896 2021-08-16 1851 Name: tn, Length: 521, dtype: int64
df = df.apply(pd.to_numeric)
df.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 521 entries, 2020-03-14 to 2021-08-16 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 an 521 non-null int64 1 ap 521 non-null int64 2 ar 521 non-null int64 3 as 521 non-null int64 4 br 521 non-null int64 5 ch 521 non-null int64 6 ct 521 non-null int64 7 dd 521 non-null int64 8 dl 521 non-null int64 9 dn 521 non-null int64 10 ga 521 non-null int64 11 gj 521 non-null int64 12 hp 521 non-null int64 13 hr 521 non-null int64 14 jh 521 non-null int64 15 jk 521 non-null int64 16 ka 521 non-null int64 17 kl 521 non-null int64 18 la 521 non-null int64 19 ld 521 non-null int64 20 mh 521 non-null int64 21 ml 521 non-null int64 22 mn 521 non-null int64 23 mp 521 non-null int64 24 mz 521 non-null int64 25 nl 521 non-null int64 26 or 521 non-null int64 27 pb 521 non-null int64 28 py 521 non-null int64 29 rj 521 non-null int64 30 sk 521 non-null int64 31 tg 521 non-null int64 32 tn 521 non-null int64 33 tr 521 non-null int64 34 tt 521 non-null int64 35 un 521 non-null int64 36 up 521 non-null int64 37 ut 521 non-null int64 38 wb 521 non-null int64 dtypes: int64(39) memory usage: 162.8 KB
df.tail(7)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ... | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2021-08-10 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | ... | 11 | 110 | 494 | 1893 | 205 | 38376 | 0 | 19 | 39 | 639 |
2021-08-11 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | ... | 19 | 157 | 482 | 1964 | 244 | 41586 | 0 | 24 | 40 | 700 |
2021-08-12 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | ... | 17 | 100 | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
2021-08-13 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | ... | 24 | 150 | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
2021-08-14 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | ... | 14 | 129 | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
2021-08-15 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | ... | 18 | 152 | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
2021-08-16 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | ... | 11 | 20 | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
7 rows × 39 columns
df7 = df.tail(7)
df7.style
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 38376 | 0 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 41586 | 0 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
def color_red_negative(x):
color = 'red' if x < 0 else 'white'
return 'color: ' + color
df7.style.applymap(color_red_negative)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 38376 | 0 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 41586 | 0 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 40081 | 0 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 38761 | 0 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 36135 | 0 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 33245 | 0 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 24696 | 0 | 17 | 18 | 502 |
df7.drop('un', inplace = True, axis=1)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df7.style.highlight_max('red')
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) /usr/local/lib/python3.7/dist-packages/IPython/core/formatters.py in __call__(self, obj) 332 pass 333 else: --> 334 return printer(obj) 335 # Finally look for special method names 336 method = get_real_method(obj, self.print_method) /usr/local/lib/python3.7/dist-packages/google/colab/_reprs.py in new_formatter(dataframe) 86 87 def new_formatter(dataframe): ---> 88 return dataframe.set_table_attributes('class="dataframe"')._repr_html_() # pylint: disable=protected-access 89 90 _original_df_formatters[key] = formatters[key].for_type_by_name( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in _repr_html_(self) 214 Hooks into Jupyter notebook rich display system. 215 """ --> 216 return self.render() 217 218 def render( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in render(self, sparse_index, sparse_columns, **kwargs) 270 if sparse_columns is None: 271 sparse_columns = get_option("styler.sparse.columns") --> 272 return self._render_html(sparse_index, sparse_columns, **kwargs) 273 274 def set_tooltips( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style_render.py in _render_html(self, sparse_index, sparse_columns, **kwargs) 119 Generates a dict with necessary kwargs passed to jinja2 template. 120 """ --> 121 self._compute() 122 # TODO: namespace all the pandas keys 123 d = self._translate(sparse_index, sparse_columns) /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style_render.py in _compute(self) 158 r = self 159 for func, args, kwargs in self._todo: --> 160 r = func(self)(*args, **kwargs) 161 return r 162 /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in _apply(self, func, axis, subset, **kwargs) 1051 subset = slice(None) if subset is None else subset 1052 subset = non_reducing_slice(subset) -> 1053 data = self.data.loc[subset] 1054 if axis is not None: 1055 result = data.apply(func, axis=axis, result_type="expand", **kwargs) /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in __getitem__(self, key) 923 with suppress(KeyError, IndexError): 924 return self.obj._get_value(*key, takeable=self._takeable) --> 925 return self._getitem_tuple(key) 926 else: 927 # we by definition only have the 0th axis /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _getitem_tuple(self, tup) 1107 return self._multi_take(tup) 1108 -> 1109 return self._getitem_tuple_same_dim(tup) 1110 1111 def _get_label(self, label, axis: int): /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _getitem_tuple_same_dim(self, tup) 804 continue 805 --> 806 retval = getattr(retval, self.name)._getitem_axis(key, axis=i) 807 # We should never have retval.ndim < self.ndim, as that should 808 # be handled by the _getitem_lowerdim call above. /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _getitem_axis(self, key, axis) 1151 raise ValueError("Cannot index with multidimensional key") 1152 -> 1153 return self._getitem_iterable(key, axis=axis) 1154 1155 # nested tuple slicing /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _getitem_iterable(self, key, axis) 1091 1092 # A collection of keys -> 1093 keyarr, indexer = self._get_listlike_indexer(key, axis) 1094 return self.obj._reindex_with_indexers( 1095 {axis: [keyarr, indexer]}, copy=True, allow_dups=True /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _get_listlike_indexer(self, key, axis) 1312 keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) 1313 -> 1314 self._validate_read_indexer(keyarr, indexer, axis) 1315 1316 if needs_i8_conversion(ax.dtype) or isinstance( /usr/local/lib/python3.7/dist-packages/pandas/core/indexing.py in _validate_read_indexer(self, key, indexer, axis) 1372 if use_interval_msg: 1373 key = list(key) -> 1374 raise KeyError(f"None of [{key}] are in the [{axis_name}]") 1375 1376 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique()) KeyError: "None of [Index(['red'], dtype='object')] are in the [columns]"
<pandas.io.formats.style.Styler at 0x7f50318bcd90>
df7.style.highlight_max(color='red')
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 38376 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 41586 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 40081 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 38761 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 36135 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 33245 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 24696 | 17 | 18 | 502 |
df7.style.highlight_max(color='red')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.drop(['dd', 'ld'], axis=1, inplace=True)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df7.style.highlight_max(color='red').highlight_min(color='green')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 38376 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 41586 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 40081 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 38761 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 36135 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 33245 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 24696 | 17 | 18 | 502 |
df7.drop('tt', axis = 1,inplace = True)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
def color_cyan_negative(x):
color = 'cyan' if x == 0 else 'while'
return 'color:' + color
df7.style.applymap(color_cyan_negative)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.highlight_max(color='green')
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 0 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 0 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 0 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 0 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 0 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 0 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 0 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.drop('dd', inplace = True, axis=1)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df7
an | ap | ar | as | br | ch | ct | dl | dn | ga | ... | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2021-08-10 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | ... | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | ... | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | ... | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | ... | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | ... | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | ... | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | ... | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
7 rows × 36 columns
df7.style.highlight_max(color='red')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.highlight_min(color='green')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.highlight_max(color='red').highlight_min(color='green')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7
an | ap | ar | as | br | ch | ct | dl | dn | ga | ... | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2021-08-10 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | ... | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | ... | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | ... | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | ... | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | ... | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | ... | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | ... | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
7 rows × 36 columns
def print_max(x):
is_max = (x == x.max())
print(is_max)
df7.apply(print_max)
def make_max_bold(x):
is_max = (x == x.max())
return ['font-weight: bold' if y else "" for y in is_max]
df7.style.apply(make_max_bold)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.apply(make_max_bold).highlight_min(color='green', axis=0)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.apply(make_max_bold).highlight_max(color='green', axis=1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.apply(make_max_bold).highlight_max(color='red', axis=1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.background_gradient(cmap = 'Blues')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.background_gradient(cmap = 'blue')
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) /usr/local/lib/python3.7/dist-packages/IPython/core/formatters.py in __call__(self, obj) 332 pass 333 else: --> 334 return printer(obj) 335 # Finally look for special method names 336 method = get_real_method(obj, self.print_method) /usr/local/lib/python3.7/dist-packages/google/colab/_reprs.py in new_formatter(dataframe) 86 87 def new_formatter(dataframe): ---> 88 return dataframe.set_table_attributes('class="dataframe"')._repr_html_() # pylint: disable=protected-access 89 90 _original_df_formatters[key] = formatters[key].for_type_by_name( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in _repr_html_(self) 214 Hooks into Jupyter notebook rich display system. 215 """ --> 216 return self.render() 217 218 def render( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in render(self, sparse_index, sparse_columns, **kwargs) 270 if sparse_columns is None: 271 sparse_columns = get_option("styler.sparse.columns") --> 272 return self._render_html(sparse_index, sparse_columns, **kwargs) 273 274 def set_tooltips( /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style_render.py in _render_html(self, sparse_index, sparse_columns, **kwargs) 119 Generates a dict with necessary kwargs passed to jinja2 template. 120 """ --> 121 self._compute() 122 # TODO: namespace all the pandas keys 123 d = self._translate(sparse_index, sparse_columns) /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style_render.py in _compute(self) 158 r = self 159 for func, args, kwargs in self._todo: --> 160 r = func(self)(*args, **kwargs) 161 return r 162 /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in _apply(self, func, axis, subset, **kwargs) 1053 data = self.data.loc[subset] 1054 if axis is not None: -> 1055 result = data.apply(func, axis=axis, result_type="expand", **kwargs) 1056 result.columns = data.columns 1057 else: /usr/local/lib/python3.7/dist-packages/pandas/core/frame.py in apply(self, func, axis, raw, result_type, args, **kwargs) 8738 kwargs=kwargs, 8739 ) -> 8740 return op.apply() 8741 8742 def applymap( /usr/local/lib/python3.7/dist-packages/pandas/core/apply.py in apply(self) 686 return self.apply_raw() 687 --> 688 return self.apply_standard() 689 690 def agg(self): /usr/local/lib/python3.7/dist-packages/pandas/core/apply.py in apply_standard(self) 810 811 def apply_standard(self): --> 812 results, res_index = self.apply_series_generator() 813 814 # wrap results /usr/local/lib/python3.7/dist-packages/pandas/core/apply.py in apply_series_generator(self) 826 for i, v in enumerate(series_gen): 827 # ignore SettingWithCopy here in case the user mutates --> 828 results[i] = self.f(v) 829 if isinstance(results[i], ABCSeries): 830 # If we have a view on v, we need to make a copy because /usr/local/lib/python3.7/dist-packages/pandas/core/apply.py in f(x) 129 130 def f(x): --> 131 return func(x, *args, **kwargs) 132 133 else: /usr/local/lib/python3.7/dist-packages/pandas/io/formats/style.py in _background_gradient(data, cmap, low, high, text_color_threshold, vmin, vmax, gmap, text_only) 2816 # extend lower / upper bounds, compresses color range 2817 norm = colors.Normalize(smin - (rng * low), smax + (rng * high)) -> 2818 rgbas = plt.cm.get_cmap(cmap)(norm(gmap)) 2819 2820 def relative_luminance(rgba) -> float: /usr/local/lib/python3.7/dist-packages/matplotlib/cm.py in get_cmap(name, lut) 132 if isinstance(name, colors.Colormap): 133 return name --> 134 cbook._check_in_list(sorted(cmap_d), name=name) 135 if lut is None: 136 return cmap_d[name] /usr/local/lib/python3.7/dist-packages/matplotlib/cbook/__init__.py in _check_in_list(_values, **kwargs) 2143 raise ValueError( 2144 "{!r} is not a valid value for {}; supported values are {}" -> 2145 .format(v, k, ', '.join(map(repr, values)))) 2146 2147 ValueError: 'blue' is not a valid value for name; supported values are 'Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'crest', 'crest_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'flare', 'flare_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magm...
<pandas.io.formats.style.Styler at 0x7f502c72a410>
df7.style.background_gradient(cmap = 'crest')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.background_gradient(cmap = "Reds", axis = 1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.background_gradient(cmap = "Blues", subset = ['ka', 'dl', 'mh', 'tn'])
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.bar()
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7.style.bar(subset=['dl', 'mh', 'tn'])
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2021-08-10 00:00:00 | 2 | 1461 | 233 | 929 | 44 | 8 | 112 | 52 | 1 | 141 | 21 | 419 | 23 | 34 | 113 | 1338 | 21119 | 7 | 6 | 5609 | 411 | 633 | 10 | 937 | 102 | 1041 | 59 | 101 | 11 | 110 | 494 | 1893 | 205 | 19 | 39 | 639 |
2021-08-11 00:00:00 | 0 | 1869 | 188 | 886 | 47 | 5 | 83 | 37 | 0 | 103 | 16 | 374 | 16 | 14 | 114 | 1826 | 23500 | 10 | 5 | 5560 | 463 | 606 | 10 | 863 | 64 | 1078 | 105 | 114 | 19 | 157 | 482 | 1964 | 244 | 24 | 40 | 700 |
2021-08-12 00:00:00 | 0 | 1859 | 180 | 935 | 43 | 12 | 98 | 49 | 1 | 88 | 17 | 354 | 16 | 44 | 176 | 1857 | 21445 | 9 | 6 | 6388 | 429 | 677 | 8 | 576 | 80 | 1107 | 80 | 109 | 17 | 100 | 453 | 1942 | 140 | 15 | 24 | 747 |
2021-08-13 00:00:00 | 0 | 1746 | 166 | 763 | 47 | 15 | 77 | 50 | 0 | 67 | 23 | 333 | 26 | 32 | 129 | 1669 | 20452 | 6 | 4 | 6686 | 384 | 522 | 9 | 575 | 81 | 1193 | 88 | 113 | 24 | 150 | 427 | 1933 | 180 | 25 | 27 | 739 |
2021-08-14 00:00:00 | 0 | 1535 | 161 | 755 | 39 | 4 | 83 | 50 | 0 | 88 | 25 | 284 | 14 | 28 | 135 | 1632 | 19451 | 9 | 7 | 5787 | 343 | 439 | 16 | 524 | 61 | 1132 | 50 | 101 | 14 | 129 | 420 | 1916 | 137 | 42 | 19 | 705 |
2021-08-15 00:00:00 | 0 | 1506 | 48 | 411 | 28 | 1 | 49 | 53 | 0 | 75 | 16 | 182 | 22 | 27 | 97 | 1431 | 18582 | 6 | 3 | 4797 | 420 | 602 | 13 | 467 | 54 | 1058 | 46 | 79 | 18 | 152 | 245 | 1896 | 142 | 30 | 16 | 673 |
2021-08-16 00:00:00 | 1 | 909 | 165 | 758 | 14 | 2 | 68 | 27 | 2 | 62 | 14 | 276 | 22 | 35 | 77 | 1065 | 12294 | 4 | 6 | 4145 | 352 | 275 | 7 | 249 | 44 | 868 | 30 | 49 | 11 | 20 | 405 | 1851 | 52 | 17 | 18 | 502 |
df7[['mh', 'tn', 'dl']].style.bar()
mh | tn | dl | |
---|---|---|---|
date | |||
2021-08-10 00:00:00 | 5609 | 1893 | 52 |
2021-08-11 00:00:00 | 5560 | 1964 | 37 |
2021-08-12 00:00:00 | 6388 | 1942 | 49 |
2021-08-13 00:00:00 | 6686 | 1933 | 50 |
2021-08-14 00:00:00 | 5787 | 1916 | 50 |
2021-08-15 00:00:00 | 4797 | 1896 | 53 |
2021-08-16 00:00:00 | 4145 | 1851 | 27 |
df7[['mh', 'dl', 'tn']].style.bar(subset=['dl'], color='red').bar(['mh'], color='blue').bar(['tn'], color='green')
mh | dl | tn | |
---|---|---|---|
date | |||
2021-08-10 00:00:00 | 5609 | 52 | 1893 |
2021-08-11 00:00:00 | 5560 | 37 | 1964 |
2021-08-12 00:00:00 | 6388 | 49 | 1942 |
2021-08-13 00:00:00 | 6686 | 50 | 1933 |
2021-08-14 00:00:00 | 5787 | 50 | 1916 |
2021-08-15 00:00:00 | 4797 | 53 | 1896 |
2021-08-16 00:00:00 | 4145 | 27 | 1851 |
!pip install nbconvert
%shell jupyter nbconvert --to html /content/Padhai_data_tabulation.ipynb
[NbConvertApp] Converting notebook /content/Padhai_data_tabulation.ipynb to html [NbConvertApp] Writing 3785731 bytes to /content/Padhai_data_tabulation.html