Difference makes the DIFFERENCE
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
plt.style.use(['dark_background'])
import seaborn as sns
sns.set(color_codes=True)
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm
style.use('seaborn-ticks')
sns.set(color_codes=True)
url = 'https://api.covid19india.org/states_daily.json'
import urllib.request
urllib.request.urlretrieve(url, 'data.json');
covid_data = pd.read_json('data.json')
covid_data
states_daily | |
---|---|
0 | {'an': '0', 'ap': '1', 'ar': '0', 'as': '0', '... |
1 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
2 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
3 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
4 | {'an': '0', 'ap': '0', 'ar': '0', 'as': '0', '... |
... | ... |
319 | {'an': '2', 'ap': '428', 'ar': '6', 'as': '274... |
320 | {'an': '0', 'ap': '12', 'ar': '0', 'as': '1', ... |
321 | {'an': '7', 'ap': '793', 'ar': '5', 'as': '302... |
322 | {'an': '0', 'ap': '324', 'ar': '1', 'as': '245... |
323 | {'an': '0', 'ap': '11', 'ar': '0', 'as': '0', ... |
324 rows × 1 columns
import json
with open('data.json') as f:
data = json.load(f)
data = data['states_daily']
covid_data = pd.json_normalize(data)
covid_data
an | ap | ar | as | br | ch | ct | date | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | status | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 0 | 7 | 0 | 0 | 0 | 0 | 14 | 0 | 2 | 6 | 19 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | Confirmed | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Recovered | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14-Mar-20 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Deceased | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15-Mar-20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Confirmed | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15-Mar-20 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | Recovered | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
319 | 2 | 428 | 6 | 274 | 226 | 1 | 125 | 28-Jun-20 | 0 | 3306 | 13 | 58 | 391 | 17 | 445 | 69 | 91 | 220 | 42 | 32 | 0 | 2330 | 0 | 23 | 113 | 0 | 0 | 137 | 206 | 31 | 244 | 0 | Recovered | 244 | 1443 | 8 | 11628 | 0 | 593 | 106 | 404 |
320 | 0 | 12 | 0 | 1 | 4 | 0 | 0 | 28-Jun-20 | 0 | 65 | 0 | 1 | 19 | 0 | 5 | 0 | 1 | 16 | 0 | 0 | 0 | 156 | 0 | 0 | 7 | 0 | 0 | 3 | 5 | 1 | 8 | 0 | Deceased | 4 | 54 | 0 | 384 | 0 | 11 | 1 | 10 |
321 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 29-Jun-20 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | Confirmed | 975 | 3949 | 34 | 18339 | -554 | 681 | 8 | 624 |
322 | 0 | 324 | 1 | 245 | 218 | 13 | 88 | 29-Jun-20 | 0 | 3628 | 6 | 46 | 440 | 38 | 585 | 56 | 269 | 176 | 79 | 30 | 0 | 2385 | 0 | 39 | 115 | 6 | 4 | 203 | 238 | 10 | 310 | 0 | Recovered | 410 | 2212 | 6 | 13497 | 0 | 698 | 93 | 526 |
323 | 0 | 11 | 0 | 0 | 1 | 0 | 0 | 29-Jun-20 | 0 | 57 | 0 | 0 | 19 | 0 | 9 | 3 | 1 | 19 | 1 | 0 | 0 | 181 | 0 | 0 | 7 | 0 | 0 | 2 | 5 | 0 | 6 | 0 | Deceased | 6 | 62 | 0 | 417 | 0 | 12 | 1 | 14 |
324 rows × 41 columns
df = covid_data
df.date = pd.to_datetime(df.date)
df = df[df.status == 'Confirmed']
df.drop('status', axis=1, inplace=True)
/usr/local/lib/python3.6/dist-packages/pandas/core/frame.py:3997: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,
df.set_index('date', inplace=True)
df
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2020-03-14 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 14 | 0 | 2 | 6 | 19 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 1 | 1 | 0 | 81 | 0 | 12 | 0 | 0 |
2020-03-15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 27 | 0 | 1 | 0 | 0 |
2020-03-16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 15 | 0 | 0 | 1 | 0 |
2020-03-17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 11 | 0 | 2 | 0 | 1 |
2020-03-18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 8 | 1 | 0 | 37 | 0 | 2 | 1 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2020-06-25 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 352 | 636 | 68 | 475 |
2020-06-26 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | -370 | 750 | 34 | 542 |
2020-06-27 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | -100 | 606 | 66 | 521 |
2020-06-28 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | -184 | 598 | 32 | 572 |
2020-06-29 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | -554 | 681 | 8 | 624 |
108 rows × 39 columns
df.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 108 entries, 2020-03-14 to 2020-06-29 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 an 108 non-null object 1 ap 108 non-null object 2 ar 108 non-null object 3 as 108 non-null object 4 br 108 non-null object 5 ch 108 non-null object 6 ct 108 non-null object 7 dd 108 non-null object 8 dl 108 non-null object 9 dn 108 non-null object 10 ga 108 non-null object 11 gj 108 non-null object 12 hp 108 non-null object 13 hr 108 non-null object 14 jh 108 non-null object 15 jk 108 non-null object 16 ka 108 non-null object 17 kl 108 non-null object 18 la 108 non-null object 19 ld 108 non-null object 20 mh 108 non-null object 21 ml 108 non-null object 22 mn 108 non-null object 23 mp 108 non-null object 24 mz 108 non-null object 25 nl 108 non-null object 26 or 108 non-null object 27 pb 108 non-null object 28 py 108 non-null object 29 rj 108 non-null object 30 sk 108 non-null object 31 tg 108 non-null object 32 tn 108 non-null object 33 tr 108 non-null object 34 tt 108 non-null object 35 un 108 non-null object 36 up 108 non-null object 37 ut 108 non-null object 38 wb 108 non-null object dtypes: object(39) memory usage: 33.8+ KB
df.tn
date 2020-03-14 1 2020-03-15 0 2020-03-16 0 2020-03-17 0 2020-03-18 1 ... 2020-06-25 3509 2020-06-26 3645 2020-06-27 3713 2020-06-28 3940 2020-06-29 3949 Name: tn, Length: 108, dtype: object
pd.to_numeric(df.tn)
date 2020-03-14 1 2020-03-15 0 2020-03-16 0 2020-03-17 0 2020-03-18 1 ... 2020-06-25 3509 2020-06-26 3645 2020-06-27 3713 2020-06-28 3940 2020-06-29 3949 Name: tn, Length: 108, dtype: int64
df = df.apply(pd.to_numeric)
df.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 108 entries, 2020-03-14 to 2020-06-29 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 an 108 non-null int64 1 ap 108 non-null int64 2 ar 108 non-null int64 3 as 108 non-null int64 4 br 108 non-null int64 5 ch 108 non-null int64 6 ct 108 non-null int64 7 dd 108 non-null int64 8 dl 108 non-null int64 9 dn 108 non-null int64 10 ga 108 non-null int64 11 gj 108 non-null int64 12 hp 108 non-null int64 13 hr 108 non-null int64 14 jh 108 non-null int64 15 jk 108 non-null int64 16 ka 108 non-null int64 17 kl 108 non-null int64 18 la 108 non-null int64 19 ld 108 non-null int64 20 mh 108 non-null int64 21 ml 108 non-null int64 22 mn 108 non-null int64 23 mp 108 non-null int64 24 mz 108 non-null int64 25 nl 108 non-null int64 26 or 108 non-null int64 27 pb 108 non-null int64 28 py 108 non-null int64 29 rj 108 non-null int64 30 sk 108 non-null int64 31 tg 108 non-null int64 32 tn 108 non-null int64 33 tr 108 non-null int64 34 tt 108 non-null int64 35 un 108 non-null int64 36 up 108 non-null int64 37 ut 108 non-null int64 38 wb 108 non-null int64 dtypes: int64(39) memory usage: 33.8 KB
df.tail(7)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2020-06-23 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 0 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 0 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 183 | 571 | 133 | 370 |
2020-06-24 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 0 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 126 | 664 | 88 | 445 |
2020-06-25 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 352 | 636 | 68 | 475 |
2020-06-26 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | -370 | 750 | 34 | 542 |
2020-06-27 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | -100 | 606 | 66 | 521 |
2020-06-28 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | -184 | 598 | 32 | 572 |
2020-06-29 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | -554 | 681 | 8 | 624 |
df = df.tail(7)
df.style
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 0 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 0 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 183 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 0 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 126 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 352 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | -370 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | -100 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | -184 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | -554 | 681 | 8 | 624 |
def colour_red_negative(x):
color = 'red' if x < 0 else 'white'
return 'color: ' + color
df.style.applymap(colour_red_negative)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | un | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 0 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 0 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 183 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 0 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 126 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 352 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | -370 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | -100 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | -184 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | -554 | 681 | 8 | 624 |
df.drop('un', axis=1, inplace=True)
df.style.applymap(colour_red_negative)
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 0 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 0 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 0 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | 681 | 8 | 624 |
df.style.highlight_max(color='red')
an | ap | ar | as | br | ch | ct | dd | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | ld | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 0 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 0 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 0 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 0 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 0 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 0 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 0 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 0 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 0 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 0 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 0 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 0 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 0 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | 681 | 8 | 624 |
df.drop(['dd', 'ld'], axis=1,inplace=True)
df.style.highlight_max(color='red').highlight_min(color='green')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | tt | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 15656 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 16868 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 18205 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 18255 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 20142 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 19610 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 18339 | 681 | 8 | 624 |
df.drop('tt', axis=1, inplace=True)
def bold_max_value(x):
is_max = (x == x.max())
return ['font-weight: bold' if y else '' for y in is_max]
df.style.apply(bold_max_value)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.apply(bold_max_value).highlight_min(color='green')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.apply(bold_max_value).highlight_min(color='green', axis=1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.apply(bold_max_value).highlight_max(color='red', axis=1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.background_gradient(cmap='Reds')
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.background_gradient(cmap='Reds', axis=1)
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.background_gradient(cmap='Reds', subset=['mh', 'tn', 'dl'])
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.bar()
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df.style.bar(subset=['mh', 'tn', 'dl'])
an | ap | ar | as | br | ch | ct | dl | dn | ga | gj | hp | hr | jh | jk | ka | kl | la | mh | ml | mn | mp | mz | nl | or | pb | py | rj | sk | tg | tn | tr | up | ut | wb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||||||||||||||||
2020-06-23 00:00:00 | 2 | 462 | 10 | 203 | 157 | 7 | 83 | 3947 | 9 | 45 | 549 | 48 | 495 | 53 | 148 | 322 | 141 | 85 | 3214 | 1 | 23 | 183 | 0 | 50 | 167 | 162 | 19 | 395 | 1 | 879 | 2516 | 23 | 571 | 133 | 370 |
2020-06-24 00:00:00 | 6 | 497 | 2 | 226 | 223 | 2 | 34 | 3788 | 13 | 42 | 572 | 31 | 490 | 26 | 186 | 397 | 152 | 0 | 3889 | 0 | 49 | 187 | 3 | 17 | 282 | 230 | 59 | 382 | 4 | 891 | 2865 | 0 | 664 | 88 | 445 |
2020-06-25 00:00:00 | 2 | 553 | 12 | 364 | 215 | 3 | 37 | 3390 | 20 | 44 | 577 | 33 | 453 | 44 | 127 | 442 | 123 | 9 | 4842 | 0 | 86 | 147 | 0 | 8 | 210 | 142 | 41 | 287 | 2 | 920 | 3509 | 32 | 636 | 68 | 475 |
2020-06-26 00:00:00 | 14 | 605 | 2 | 273 | 190 | 2 | 89 | 3460 | 15 | 44 | 580 | 25 | 421 | 31 | 213 | 445 | 150 | 5 | 5024 | 2 | 19 | 203 | 2 | 16 | 218 | 188 | 32 | 364 | 2 | 985 | 3645 | 35 | 750 | 34 | 542 |
2020-06-27 00:00:00 | 0 | 796 | 3 | 246 | 302 | 3 | 65 | 2948 | 15 | 89 | 615 | 30 | 543 | 45 | 204 | 918 | 195 | 14 | 6368 | 0 | 17 | 167 | 3 | 16 | 170 | 99 | 85 | 284 | 0 | 1087 | 3713 | 9 | 606 | 66 | 521 |
2020-06-28 00:00:00 | 11 | 813 | 5 | 327 | 244 | 3 | 84 | 2889 | 4 | 70 | 624 | 22 | 402 | 25 | 127 | 1267 | 118 | 3 | 5493 | 2 | 93 | 221 | 1 | 28 | 264 | 160 | 29 | 327 | 1 | 983 | 3940 | 12 | 598 | 32 | 572 |
2020-06-29 00:00:00 | 7 | 793 | 5 | 302 | 394 | 3 | 101 | 2084 | 15 | 53 | 626 | 26 | 381 | 62 | 144 | 1105 | 122 | 1 | 5257 | 1 | 42 | 184 | 0 | 36 | 245 | 202 | 42 | 389 | 0 | 975 | 3949 | 34 | 681 | 8 | 624 |
df[['mh', 'tn', 'dl']].style.bar()
mh | tn | dl | |
---|---|---|---|
date | |||
2020-06-23 00:00:00 | 3214 | 2516 | 3947 |
2020-06-24 00:00:00 | 3889 | 2865 | 3788 |
2020-06-25 00:00:00 | 4842 | 3509 | 3390 |
2020-06-26 00:00:00 | 5024 | 3645 | 3460 |
2020-06-27 00:00:00 | 6368 | 3713 | 2948 |
2020-06-28 00:00:00 | 5493 | 3940 | 2889 |
2020-06-29 00:00:00 | 5257 | 3949 | 2084 |
df[['mh', 'tn', 'dl']].style.bar(subset=['mh'], color='red').bar(subset=['tn'], color='orange').bar(subset=['dl'], color='yellow')
mh | tn | dl | |
---|---|---|---|
date | |||
2020-06-23 00:00:00 | 3214 | 2516 | 3947 |
2020-06-24 00:00:00 | 3889 | 2865 | 3788 |
2020-06-25 00:00:00 | 4842 | 3509 | 3390 |
2020-06-26 00:00:00 | 5024 | 3645 | 3460 |
2020-06-27 00:00:00 | 6368 | 3713 | 2948 |
2020-06-28 00:00:00 | 5493 | 3940 | 2889 |
2020-06-29 00:00:00 | 5257 | 3949 | 2084 |
x = np.random.normal(size=1000)
sns.distplot(x);
sns.distplot(x, kde=False);
sns.distplot(x, kde=False, rug=True);
sns.distplot(x, kde=False, rug=True, bins=50);
sns.kdeplot(x);
sns.kdeplot(x, shade=True);
y = np.random.uniform(size=1000)
sns.kdeplot(x,shade=True)
sns.kdeplot(y,shade=True);
d = sns.load_dataset('diamonds')
d
carat | cut | color | clarity | depth | table | price | x | y | z | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326 | 3.95 | 3.98 | 2.43 |
1 | 0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326 | 3.89 | 3.84 | 2.31 |
2 | 0.23 | Good | E | VS1 | 56.9 | 65.0 | 327 | 4.05 | 4.07 | 2.31 |
3 | 0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334 | 4.20 | 4.23 | 2.63 |
4 | 0.31 | Good | J | SI2 | 63.3 | 58.0 | 335 | 4.34 | 4.35 | 2.75 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
53935 | 0.72 | Ideal | D | SI1 | 60.8 | 57.0 | 2757 | 5.75 | 5.76 | 3.50 |
53936 | 0.72 | Good | D | SI1 | 63.1 | 55.0 | 2757 | 5.69 | 5.75 | 3.61 |
53937 | 0.70 | Very Good | D | SI1 | 62.8 | 60.0 | 2757 | 5.66 | 5.68 | 3.56 |
53938 | 0.86 | Premium | H | SI2 | 61.0 | 58.0 | 2757 | 6.15 | 6.12 | 3.74 |
53939 | 0.75 | Ideal | D | SI2 | 62.2 | 55.0 | 2757 | 5.83 | 5.87 | 3.64 |
53940 rows × 10 columns
d.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 53940 entries, 0 to 53939 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 carat 53940 non-null float64 1 cut 53940 non-null object 2 color 53940 non-null object 3 clarity 53940 non-null object 4 depth 53940 non-null float64 5 table 53940 non-null float64 6 price 53940 non-null int64 7 x 53940 non-null float64 8 y 53940 non-null float64 9 z 53940 non-null float64 dtypes: float64(6), int64(1), object(3) memory usage: 4.1+ MB
sns.distplot(d.carat);
sns.distplot(d.price);
sns.distplot(d.x);
sns.distplot(d.x, rug=True);
sns.distplot(d.sample(1000).x, rug=True, bins=50);
sns.kdeplot(d.x, shade=True)
sns.kdeplot(d.y, shade=True)
sns.kdeplot(d.z, shade=True);
x = np.random.normal(size=1000)
sns.boxplot(x)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0f1378fc18>
sns.kdeplot(x);
x = np.random.uniform(size=1000)
sns.boxplot(x);
sns.boxplot(x, whis=0.2)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0f14d0c6a0>
x = np.random.normal(size=1000)
sns.boxplot(x, whis=0.5);
sns.boxplot(x, whis=0.5, fliersize=1);
sns.boxplot(x, whis=0.5, fliersize=1, orient='v');
sns.boxplot(d.price);
sns.kdeplot(d.price);
sns.boxplot(d.x);
sns.distplot(d.x);
sns.distplot(d.carat)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0f14ca10b8>
sns.boxplot(d.carat)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0f14f55908>
sns.boxplot(d.sample(5000).carat);
sns.boxenplot(d.sample(5000).carat);
sns.boxenplot(x = 'island', y = 'body_mass_g', data = p);
c = d.groupby('cut')['cut'].count()
sns.barplot(x=c.index, y=c.values)
<matplotlib.axes._subplots.AxesSubplot at 0x7f0f14c31c50>
c = d.groupby('clarity')['clarity'].count()
sns.barplot(x=c.index, y=c.values);
c = d.groupby('color')['color'].count()
sns.barplot(x=c.index, y=c.values);
x = np.random.normal(size=1000)
y = np.random.normal(size=1000)
df = pd.DataFrame({'x': x, 'y': y})
sns.jointplot('x', 'y', data=df);
sns.jointplot('x', 'y', data=df, kind='kde');
x = np.random.normal(size=1000)
y = 3 * x + np.random.normal(size=1000)/5
df = pd.DataFrame({'x': x, 'y': y})
sns.jointplot('x', 'y', data=df, kind='kde');
sns.jointplot('carat', 'price', data=d, kind='kde');
sns.jointplot('carat', 'price', data=d.sample(500));
sns.jointplot('x', 'price', data=d.sample(500));
sns.jointplot('x', 'price', data=d.sample(500), kind='kde');
sns.swarmplot(d.sample(1000).carat);
sns.swarmplot(d.sample(100).price);
d.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 53940 entries, 0 to 53939 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 carat 53940 non-null float64 1 cut 53940 non-null object 2 color 53940 non-null object 3 clarity 53940 non-null object 4 depth 53940 non-null float64 5 table 53940 non-null float64 6 price 53940 non-null int64 7 x 53940 non-null float64 8 y 53940 non-null float64 9 z 53940 non-null float64 dtypes: float64(6), int64(1), object(3) memory usage: 4.1+ MB
sns.swarmplot(x='cut', y='price', data=d.sample(1000));
sns.swarmplot(x='color', y='price', data=d.sample(1000));
sns.swarmplot(x='clarity', y='price', data=d.sample(1000));
sns.swarmplot(x='clarity', y='price', data=d.sample(1000));
p = sns.load_dataset('penguins')
p
species | island | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex | |
---|---|---|---|---|---|---|---|
0 | Adelie | Torgersen | 39.1 | 18.7 | 181.0 | 3750.0 | MALE |
1 | Adelie | Torgersen | 39.5 | 17.4 | 186.0 | 3800.0 | FEMALE |
2 | Adelie | Torgersen | 40.3 | 18.0 | 195.0 | 3250.0 | FEMALE |
3 | Adelie | Torgersen | NaN | NaN | NaN | NaN | NaN |
4 | Adelie | Torgersen | 36.7 | 19.3 | 193.0 | 3450.0 | FEMALE |
... | ... | ... | ... | ... | ... | ... | ... |
339 | Gentoo | Biscoe | NaN | NaN | NaN | NaN | NaN |
340 | Gentoo | Biscoe | 46.8 | 14.3 | 215.0 | 4850.0 | FEMALE |
341 | Gentoo | Biscoe | 50.4 | 15.7 | 222.0 | 5750.0 | MALE |
342 | Gentoo | Biscoe | 45.2 | 14.8 | 212.0 | 5200.0 | FEMALE |
343 | Gentoo | Biscoe | 49.9 | 16.1 | 213.0 | 5400.0 | MALE |
344 rows × 7 columns
sns.swarmplot(x='species', y='body_mass_g', data=p);
sns.swarmplot(x='island', y='body_mass_g', data=p);
sns.swarmplot(x='body_mass_g', data=p);
sns.violinplot(x='body_mass_g', data=p);
sns.boxplot(x='body_mass_g', data=p);
sns.kdeplot(p.body_mass_g, shade=True);
fig, axs = plt.subplots(nrows=4)
sns.swarmplot(x='body_mass_g', data=p, ax=axs[0]);
sns.violinplot(x='body_mass_g', data=p, ax=axs[1]);
sns.boxplot(x='body_mass_g', data=p, ax=axs[2]);
sns.kdeplot(p.body_mass_g, shade=True, ax=axs[3]);
fig, axs = plt.subplots(nrows=4)
fig.set_size_inches(5, 10);
sns.swarmplot(x='body_mass_g', data=p, ax=axs[0]);
sns.violinplot(x='body_mass_g', data=p, ax=axs[1]);
sns.boxplot(x='body_mass_g', data=p, ax=axs[2]);
sns.kdeplot(p.body_mass_g, shade=True, ax=axs[3]);
fig, axs = plt.subplots(nrows=4)
fig.set_size_inches(5, 10);
p1 = sns.swarmplot(x='body_mass_g', data=p, ax=axs[0]);
p1.set(xlim=(2000, 7500));
p2 = sns.violinplot(x='body_mass_g', data=p, ax=axs[1]);
p2.set(xlim=(2000, 7500));
p3 = sns.boxplot(x='body_mass_g', data=p, ax=axs[2]);
p3.set(xlim=(2000, 7500));
p4 = sns.kdeplot(p.body_mass_g, shade=True, ax=axs[3]);
p4.set(xlim=(2000, 7500));
sns.violinplot(x='body_mass_g', data=p);
sns.violinplot(x='body_mass_g', data=p, orient='v');
sns.violinplot(x='species', y='body_mass_g', data=p);
p.head()
species | island | culmen_length_mm | culmen_depth_mm | flipper_length_mm | body_mass_g | sex | |
---|---|---|---|---|---|---|---|
0 | Adelie | Torgersen | 39.1 | 18.7 | 181.0 | 3750.0 | MALE |
1 | Adelie | Torgersen | 39.5 | 17.4 | 186.0 | 3800.0 | FEMALE |
2 | Adelie | Torgersen | 40.3 | 18.0 | 195.0 | 3250.0 | FEMALE |
3 | Adelie | Torgersen | NaN | NaN | NaN | NaN | NaN |
4 | Adelie | Torgersen | 36.7 | 19.3 | 193.0 | 3450.0 | FEMALE |
sns.violinplot(x='species', y='flipper_length_mm', data=p);
sns.violinplot(x='island', y='flipper_length_mm', data=p);
sns.violinplot(x='sex', y='flipper_length_mm', data=p);
sns.violinplot(x='island', y='flipper_length_mm', data=p);
sns.swarmplot(x='island', y='flipper_length_mm', data=p);
sns.swarmplot(x='island', y='flipper_length_mm', hue='sex', data=p);
sns.swarmplot(x='island', y='flipper_length_mm', hue='species', data=p);
sns.swarmplot(x='cut', y='price', data=d.sample(1000));
sns.swarmplot(x='cut', y='price', hue='color', data=d.sample(1000));
sns.violinplot(x='island', y='flipper_length_mm', data=p[p.sex=='MALE']);
sns.violinplot(x='island', y='flipper_length_mm', data=p[p.sex=='FEMALE']);
sns.violinplot(x='island', y='flipper_length_mm', hue='sex', split=True, data=p);
sns.violinplot(x='island', y='flipper_length_mm',
hue='sex', split=True, inner='quartile', data=p);
sns.violinplot(x='island', y='flipper_length_mm',
hue='species', split=True, inner='quartile', data=p);
sns.violinplot(x='island', y='flipper_length_mm',
hue='species', data=p);
p['binary_species'] = p.species.apply(lambda x: 0 if x == 'Gentoo' else 1)
p
sns.violinplot(x='island', y='flipper_length_mm',
hue='binary_species', split=True, inner='quartile', data=p);
p['binary_species'] = p.species.apply(lambda x: 'Gentoo' if x == 'Gentoo' else 'Adelie | Chinstrap')
sns.violinplot(x='island', y='flipper_length_mm',
hue='binary_species', split=True, inner='quartile', data=p);
sns.kdeplot(p.flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Gentoo'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Gentoo'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Adelie'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Chinstrap'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Gentoo'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Adelie'].flipper_length_mm, shade=True);
sns.kdeplot(p[p.species == 'Chinstrap'].flipper_length_mm, shade=True);
plt.legend(title='Species', labels=['Gentoo', 'Adelie', 'Chinstrap']);
sns.boxplot(p[p.species == 'Gentoo'].flipper_length_mm);
sns.boxplot(p[p.species == 'Adelie'].flipper_length_mm);
sns.boxplot(p[p.species == 'Chinstrap'].flipper_length_mm);
plt.legend(title='Species', labels=['Gentoo', 'Adelie', 'Chinstrap']);
fig, axs = plt.subplots(nrows=3);
sns.kdeplot(p[p.species == 'Gentoo'].flipper_length_mm, shade=True, ax=axs[0]);
sns.kdeplot(p[p.species == 'Adelie'].flipper_length_mm, shade=True, ax=axs[1]);
sns.kdeplot(p[p.species == 'Chinstrap'].flipper_length_mm, shade=True, ax=axs[2]);
# plt.legend(title='Species', labels=['Gentoo', 'Adelie', 'Chinstrap']);
fig, axs = plt.subplots(nrows=3);
sns.kdeplot(p[p.species == 'Gentoo'].flipper_length_mm, shade=True, ax=axs[0]);
sns.kdeplot(p[p.species == 'Adelie'].flipper_length_mm, shade=True, ax=axs[1]);
sns.kdeplot(p[p.species == 'Chinstrap'].flipper_length_mm, shade=True, ax=axs[2]);
plt.tight_layout()
# plt.legend(title='Species', labels=['Gentoo', 'Adelie', 'Chinstrap']);
column_name = 'species'
nrows = len(p[column_name].unique())
fig, axs = plt.subplots(nrows=nrows);
i = 0
for c_v in p[column_name].unique():
pl = sns.kdeplot(p[p[column_name] == c_v].flipper_length_mm,
shade=True, ax=axs[i]);
pl.set_title(c_v);
i += 1
plt.tight_layout()
g = sns.FacetGrid(p, row='species');
g.map(sns.kdeplot, 'flipper_length_mm', shade=True);
g = sns.FacetGrid(p, col='species');
g.map(sns.kdeplot, 'flipper_length_mm', shade=True);
g = sns.FacetGrid(p, col='island');
g.map(sns.kdeplot, 'flipper_length_mm', shade=True);
g = sns.FacetGrid(p, col='island');
g.map(sns.distplot, 'flipper_length_mm');
g = sns.FacetGrid(p, col='island', row='sex');
g.map(sns.distplot, 'flipper_length_mm');
g = sns.FacetGrid(p, col='island', row='sex');
g.map(sns.kdeplot, 'flipper_length_mm');
g = sns.FacetGrid(p, col='island', row='sex');
g.map(sns.violinplot, 'flipper_length_mm');
/usr/local/lib/python3.6/dist-packages/seaborn/axisgrid.py:723: UserWarning: Using the violinplot function without specifying `order` is likely to produce an incorrect plot. warnings.warn(warning)
sns.jointplot(p.body_mass_g, p.flipper_length_mm);
sns.jointplot(p.body_mass_g, p.culmen_depth_mm);
sns.pairplot(p);
sns.pairplot(p, hue='sex');
sns.pairplot(p, hue='species');
sns.pairplot(d.sample(1000));
sns.pairplot(d.sample(1000), hue='cut');
sns.pairplot(d.sample(1000), hue='cut', corner=True);